Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Toward better understanding of chloral hydrate stability in water: Kinetics, pathways, and influencing factors.

Identifieur interne : 001620 ( Main/Exploration ); précédent : 001619; suivant : 001621

Toward better understanding of chloral hydrate stability in water: Kinetics, pathways, and influencing factors.

Auteurs : Shengcun Ma [République populaire de Chine] ; Xiaoqi Guo [République populaire de Chine] ; Baiyang Chen [République populaire de Chine]

Source :

RBID : pubmed:27206269

Descripteurs français

English descriptors

Abstract

Chloral hydrate (CH) is a disinfection byproduct commonly found in disinfected water, and once formed, CH may undergo several transformation processes in water distribution system. In order to understand its fate and occurrence in water, this study examined several factors that may affect the stability of CH in water, including pH, temperature, initial CH concentration, typical anions, and the presence of free chlorine and monochloramine. The results indicated that CH was a relatively stable compound (half-life ∼7 d for 20 μg/L) in ambient pH (7) and temperature (20 °C) conditions. However, the hydrolysis rate can be greatly facilitated by increasing pH (from 7 to 12) and temperature (from 20 to 60 °C) or decreasing initial CH concentration (from 10 mg/L to 20 μg/L). To quantify the influences of these factors on the CH hydrolysis rate constant (k, 1/h), which spans five orders of magnitude, this study developed a multivariate model that predicts literature and this study's data well (R(2) = 0.90). In contrast, the presence of chloride, nitrate, monochloramine, and free chlorine exhibited no significant impacts on the degradation of CH, while the CH loss in non-buffered waters spiked with sodium hypochlorite was driven by alkaline hydrolysis. In terms of reaction products, CH hydrolysis yielded mostly chloroform and formic acid and a few chloride, which confirmed decarburization as a dominant pathway and dehalogenation as a noticeable coexisting reaction.

DOI: 10.1016/j.chemosphere.2016.05.018
PubMed: 27206269


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Toward better understanding of chloral hydrate stability in water: Kinetics, pathways, and influencing factors.</title>
<author>
<name sortKey="Ma, Shengcun" sort="Ma, Shengcun" uniqKey="Ma S" first="Shengcun" last="Ma">Shengcun Ma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055</wicri:regionArea>
<placeName>
<settlement type="city">Shenzhen</settlement>
<region type="province">Guangdong</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Guo, Xiaoqi" sort="Guo, Xiaoqi" uniqKey="Guo X" first="Xiaoqi" last="Guo">Xiaoqi Guo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055</wicri:regionArea>
<placeName>
<settlement type="city">Shenzhen</settlement>
<region type="province">Guangdong</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Baiyang" sort="Chen, Baiyang" uniqKey="Chen B" first="Baiyang" last="Chen">Baiyang Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China. Electronic address: poplar_chen@hotmail.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055</wicri:regionArea>
<placeName>
<settlement type="city">Shenzhen</settlement>
<region type="province">Guangdong</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27206269</idno>
<idno type="pmid">27206269</idno>
<idno type="doi">10.1016/j.chemosphere.2016.05.018</idno>
<idno type="wicri:Area/Main/Corpus">001785</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001785</idno>
<idno type="wicri:Area/Main/Curation">001785</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001785</idno>
<idno type="wicri:Area/Main/Exploration">001785</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Toward better understanding of chloral hydrate stability in water: Kinetics, pathways, and influencing factors.</title>
<author>
<name sortKey="Ma, Shengcun" sort="Ma, Shengcun" uniqKey="Ma S" first="Shengcun" last="Ma">Shengcun Ma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055</wicri:regionArea>
<placeName>
<settlement type="city">Shenzhen</settlement>
<region type="province">Guangdong</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Guo, Xiaoqi" sort="Guo, Xiaoqi" uniqKey="Guo X" first="Xiaoqi" last="Guo">Xiaoqi Guo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055</wicri:regionArea>
<placeName>
<settlement type="city">Shenzhen</settlement>
<region type="province">Guangdong</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Baiyang" sort="Chen, Baiyang" uniqKey="Chen B" first="Baiyang" last="Chen">Baiyang Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China. Electronic address: poplar_chen@hotmail.com.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055</wicri:regionArea>
<placeName>
<settlement type="city">Shenzhen</settlement>
<region type="province">Guangdong</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Chemosphere</title>
<idno type="eISSN">1879-1298</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chloral Hydrate (chemistry)</term>
<term>Chloral Hydrate (metabolism)</term>
<term>Chloramines (MeSH)</term>
<term>Chlorine (chemistry)</term>
<term>Chloroform (MeSH)</term>
<term>Disinfection (MeSH)</term>
<term>Half-Life (MeSH)</term>
<term>Halogenation (MeSH)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Hydrolysis (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Temperature (MeSH)</term>
<term>Water (chemistry)</term>
<term>Water Supply (standards)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alimentation en eau (normes)</term>
<term>Chloramines (MeSH)</term>
<term>Chlore (composition chimique)</term>
<term>Chloroforme (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Désinfection (MeSH)</term>
<term>Eau (composition chimique)</term>
<term>Halogénation (MeSH)</term>
<term>Hydrate de chloral (composition chimique)</term>
<term>Hydrate de chloral (métabolisme)</term>
<term>Hydrolyse (MeSH)</term>
<term>Période (MeSH)</term>
<term>Température (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Chloral Hydrate</term>
<term>Chlorine</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chloral Hydrate</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Chloramines</term>
<term>Chloroform</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Chlore</term>
<term>Eau</term>
<term>Hydrate de chloral</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Hydrate de chloral</term>
</keywords>
<keywords scheme="MESH" qualifier="normes" xml:lang="fr">
<term>Alimentation en eau</term>
</keywords>
<keywords scheme="MESH" qualifier="standards" xml:lang="en">
<term>Water Supply</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Disinfection</term>
<term>Half-Life</term>
<term>Halogenation</term>
<term>Hydrogen-Ion Concentration</term>
<term>Hydrolysis</term>
<term>Kinetics</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chloramines</term>
<term>Chloroforme</term>
<term>Cinétique</term>
<term>Concentration en ions d'hydrogène</term>
<term>Désinfection</term>
<term>Halogénation</term>
<term>Hydrolyse</term>
<term>Période</term>
<term>Température</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Chloral hydrate (CH) is a disinfection byproduct commonly found in disinfected water, and once formed, CH may undergo several transformation processes in water distribution system. In order to understand its fate and occurrence in water, this study examined several factors that may affect the stability of CH in water, including pH, temperature, initial CH concentration, typical anions, and the presence of free chlorine and monochloramine. The results indicated that CH was a relatively stable compound (half-life ∼7 d for 20 μg/L) in ambient pH (7) and temperature (20 °C) conditions. However, the hydrolysis rate can be greatly facilitated by increasing pH (from 7 to 12) and temperature (from 20 to 60 °C) or decreasing initial CH concentration (from 10 mg/L to 20 μg/L). To quantify the influences of these factors on the CH hydrolysis rate constant (k, 1/h), which spans five orders of magnitude, this study developed a multivariate model that predicts literature and this study's data well (R(2) = 0.90). In contrast, the presence of chloride, nitrate, monochloramine, and free chlorine exhibited no significant impacts on the degradation of CH, while the CH loss in non-buffered waters spiked with sodium hypochlorite was driven by alkaline hydrolysis. In terms of reaction products, CH hydrolysis yielded mostly chloroform and formic acid and a few chloride, which confirmed decarburization as a dominant pathway and dehalogenation as a noticeable coexisting reaction. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">27206269</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>03</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-1298</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>157</Volume>
<PubDate>
<Year>2016</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Chemosphere</Title>
<ISOAbbreviation>Chemosphere</ISOAbbreviation>
</Journal>
<ArticleTitle>Toward better understanding of chloral hydrate stability in water: Kinetics, pathways, and influencing factors.</ArticleTitle>
<Pagination>
<MedlinePgn>18-24</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.chemosphere.2016.05.018</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0045-6535(16)30647-6</ELocationID>
<Abstract>
<AbstractText>Chloral hydrate (CH) is a disinfection byproduct commonly found in disinfected water, and once formed, CH may undergo several transformation processes in water distribution system. In order to understand its fate and occurrence in water, this study examined several factors that may affect the stability of CH in water, including pH, temperature, initial CH concentration, typical anions, and the presence of free chlorine and monochloramine. The results indicated that CH was a relatively stable compound (half-life ∼7 d for 20 μg/L) in ambient pH (7) and temperature (20 °C) conditions. However, the hydrolysis rate can be greatly facilitated by increasing pH (from 7 to 12) and temperature (from 20 to 60 °C) or decreasing initial CH concentration (from 10 mg/L to 20 μg/L). To quantify the influences of these factors on the CH hydrolysis rate constant (k, 1/h), which spans five orders of magnitude, this study developed a multivariate model that predicts literature and this study's data well (R(2) = 0.90). In contrast, the presence of chloride, nitrate, monochloramine, and free chlorine exhibited no significant impacts on the degradation of CH, while the CH loss in non-buffered waters spiked with sodium hypochlorite was driven by alkaline hydrolysis. In terms of reaction products, CH hydrolysis yielded mostly chloroform and formic acid and a few chloride, which confirmed decarburization as a dominant pathway and dehalogenation as a noticeable coexisting reaction. </AbstractText>
<CopyrightInformation>Copyright © 2016. Published by Elsevier Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Shengcun</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Xiaoqi</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Baiyang</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Harbin Institute of Technology Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China. Electronic address: poplar_chen@hotmail.com.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>05</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Chemosphere</MedlineTA>
<NlmUniqueID>0320657</NlmUniqueID>
<ISSNLinking>0045-6535</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002700">Chloramines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>418M5916WG</RegistryNumber>
<NameOfSubstance UI="D002697">Chloral Hydrate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4R7X1O2820</RegistryNumber>
<NameOfSubstance UI="D002713">Chlorine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7V31YC746X</RegistryNumber>
<NameOfSubstance UI="D002725">Chloroform</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>KW8K411A1P</RegistryNumber>
<NameOfSubstance UI="C030816">chloramine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002697" MajorTopicYN="N">Chloral Hydrate</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002700" MajorTopicYN="N">Chloramines</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002713" MajorTopicYN="N">Chlorine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002725" MajorTopicYN="N">Chloroform</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004203" MajorTopicYN="Y">Disinfection</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006207" MajorTopicYN="N">Half-Life</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054879" MajorTopicYN="N">Halogenation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="Y">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014881" MajorTopicYN="N">Water Supply</DescriptorName>
<QualifierName UI="Q000592" MajorTopicYN="Y">standards</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Chlorine oxidation</Keyword>
<Keyword MajorTopicYN="N">Hydrolysis</Keyword>
<Keyword MajorTopicYN="N">Pathway</Keyword>
<Keyword MajorTopicYN="N">Trichloroacetaldehyde</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>02</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>05</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>05</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>5</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>5</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27206269</ArticleId>
<ArticleId IdType="pii">S0045-6535(16)30647-6</ArticleId>
<ArticleId IdType="doi">10.1016/j.chemosphere.2016.05.018</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<region>
<li>Guangdong</li>
</region>
<settlement>
<li>Shenzhen</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<region name="Guangdong">
<name sortKey="Ma, Shengcun" sort="Ma, Shengcun" uniqKey="Ma S" first="Shengcun" last="Ma">Shengcun Ma</name>
</region>
<name sortKey="Chen, Baiyang" sort="Chen, Baiyang" uniqKey="Chen B" first="Baiyang" last="Chen">Baiyang Chen</name>
<name sortKey="Guo, Xiaoqi" sort="Guo, Xiaoqi" uniqKey="Guo X" first="Xiaoqi" last="Guo">Xiaoqi Guo</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001620 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001620 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27206269
   |texte=   Toward better understanding of chloral hydrate stability in water: Kinetics, pathways, and influencing factors.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27206269" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020